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Abstract 

The Krieger-Li-Iafrate approximation can be expressed as the zeroth order 

result of an unstable iterative method for solving the integral equation form 

of the optimized-effective-potential method. By pre-conditioning the iterate a 

first order correction can be obtained which recovers the bulk of quanta1 oscil- 

lations missing in the zeroth order approximation. A comparison of calculated 

total energies are given with Krieger-Li-Iafrate, Local Density Functional, and 

Hyper-Hartree-Fock results for non-relativistic atoms and ions. 
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I. INTRODUCTION 

The optimized-effective-potential method (OEPM) [14] minimizes the Hartree-Fock (HF) 

configuration average total energy expression given wavefunctions computed in a single cen- 

tral field potential V(r). 

This variational expression results in a linear Fredholm integral equation of the first kind 

for the exchange potential 

s dr’K(r, T-‘)I(-,&-‘) = Q(T) (1.2) 

where the exchange potential is defined as the diference over the classical Hartree potential 

in V(r). Explicit expressions for the kernal K(T, T’) and inhomogenous drive term Q(T) and 

their properties are supplied in Appendix A. For simplicity we limit ourselves in this paper 

to non-relativistic systems, the generalization to relativistic systems is straightforward. 

By definition the OEPM total energies are closer to Hartree-Fock than parametetric 

potential model results (e.g. [3] ) ( w ic h h can be viewed as a minimization with a constrained 

form for V(r) [7]) or by employing wavefunctions obtained from density functional (DF) 

theories, either directly into the Hartree-Fock energy expression or by using the density 

functional expression for the total energy explicitly. Fig. (1) presents such a comparison for 

the ground state configuration of all ionstages for all light elements 2 < 36. 

The main disadvantage of the OEPM over DF methods is that at each iterative step 

of the self-consistent field solution an updated exchange potential must be obtained by 

constructing and solving Eq. (1.2). Th e additional computational labour can be seen as 

arising from discretizing the integral equation into a linear system of N equations in N 

unknowns, where N, the number of radial mesh points, must be kept modest for speed and 

memory considerations. 

Additionally, some specific features of the kernal imposes special consideration. Solutions 

to Eq. (1.2) are defined only up to an additive constant determined by boundary conditions. 
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A discretizion of the integral equation requires that an adequate asymptotic form must be 

obtained by the last mesh point, before numerical instabilities from the singular nature of the 

kernal set in. In practice this is often not the case. Furthermore, in practice quadratic forms 

for the exchange potential near the origin must also be imposed to avoid numerical ‘ringing’ 

[4]. These instabilities, arising from the fact that the eigenvalues of the singular value 

decompostion of the kernal have an accumulation point at zero, implies that small errors in 

the in-homongenous drive term of the integral equation are amplified in the solution. This 

instability precludes straight-forward iterative techniques for the solution of the integral 

equation, a difficulty often plagued by Fredholm integral equations of the first kind unless 

some sort of regularization is imposed [6]. 

Alternative approaches to the OEPM (e.g. [7]) h ave employed multi-dimensional opti- 

mizations of the HF energy functional directly. Besides the computational expense of the 

multi-dimensional optimization, this proceedure requires the concomittent expense of invok- 

ing the wave equation solver at each step of the optimization, and the process is usually 

more time consuming than ‘brute-force’ discretization of the OEPM integral equation. 

To avoid these problems, an approximate solution to the integral equation, the Krieger- 

Li-Iafrate (KLI) approximation [13], can be employed. Its implementation requires a matrix 

inversion of dimension of the number of occupied orbitals, is not restricted to modest radial 

mesh sizes, and has the proper asymptotic form built in. Its disadvantage is that quanta1 

‘bumps’ in the exchange potential (as manifested by numerical solutions of the integral 

equation) are not fully reproduced, the concomittant degradation in the quality of the total 

energies and wavefunctions are the subject of this investigation. 

In this paper we present an extension of the KLI approximation, which retains the aspects 

of speed and simplicity of the original algorithm, and obtains the bulk of the missing quanta1 

oscillations. It is essentially a pre-conditioning of the first order iterate in an attempted 

iterative solution of the integral equation, with the KLI solution forming the zeroth order. 

The utility of this scheme lays in the quality of the first order results, it is not a systematic 

approach to an iterative solution, for further iterations will exhibit instabilities and diverge 
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from the numerical solution. 

II. THE KLI APPROXIMATION AS ZEROTH ORDER ITERATE 

The OEPM integral equation can be re-written as 

where 

with the Green’s function G, and Fock term h, defined as in Appendix A. Note that by 

definition we have the orthogonality property 

(%nbn> = 0’ (2.3) 

where for simplicity of notation we have adopted the notation 

(2.4) 

for any radial function f(r). By operating on Eq. (2.1) with -d2/dr2 and manipulating we 

can obtain 

where 

(cn) = 0 

Because w, has the property 

(2.5) 

P-6) 

(2.7) 
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/h(r) = K(+hn(r’) - h,(r’) 

a straight-forward re-arrangement of Eq. (2.5) leads to 

K(r) = VS(r) + P(r) + zn %dgz(~)[((K))~ - Wml 
cm %n4tx~) 

where in Eq. (2.10) we have introduced the constants 

(2.9) 

(2.10) 

(2.11) 

6% = lm hM~)hm(r) (2.12) 

and utilized Slater’s [l] average-Fock-approximation (AFA) to the exchange potential 

and introduced 

(2.13) 

(2.14) 

Slater’s AFA is a solution to the OEPM integral equation when the Green’s function is 

approximated [2] by neglecting the orbital dependence of the energy denominator in Eq. 

(A14). 

The KLI approximation is a result of approximating the exact weak constraint 

s 0 
O3 chQ&) = 0 (2.15) 

by the strong constraint R,(r) = 0 in Eq. (2.10). (A n aternative derivation of the KLI 

formalism has been given by Nagy [8]. As V, is undetermined to within a constant we take 

as boundary condition 

v&- + 00) M vs[oyr t 00) (2.16) 

which exhibits for isolated ions the proper exchange hole Coulomb tail. This boundary 

condition implies that ((Vz))m = (X), for the least bound orbital, while the other constants 
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UQ>m - L% (f or m # least bound) are determined by solving the number-of-orbitals 

minus one dimensional system of linear equations formed from taking the expectation value 

of V, (the left hand side of Eq. (2.10)) over each orbital. 

The results of the KLI approximation are in good agreement with numerical solutions of 

the integral Eq. (2.1), V, in the far-field region it exhibits an asymptotic ionic Coulomb ex- 

change hole tail, while in the nea-field region it enters the nucleus with zero slope, properties 

not possesed by the proto-typical density functional exchange potential 

K(r) = -2 (+y3 (2.17) 

However quanta1 oscillations found in the numerical solutions are not properly reproduced 

by the KLI approximation ( Fig. (2) ). 

III. CORRECTIONS TO THE KLI APPROXIMATION 

An iterative proceedure can now be formulated, where given an approximation to the 

exchange potential (e.g. starting with the KLI result, which is close to the ‘exact’ OEPM ex- 

change potential) and substituting back into Eqs. (2.2) , one can then calculate an improved 

estimation of the corrective functions R,(r) and thereby obtain an improved approximation 

to the exchange potential 

NJ.(r) = Vyyr) - v;yr) = V”(T) + cm hL~~(Mw&l 
c, %rld$(~) (34 

Note that Eq. (3.1) must be solved as was Eq. (2.10) with the same boundary condition. 

Up to this point the KLI approximation (besides avoiding a large matrix solution of the 

OEPM integral equation) did not require the Green’s function explicitly. To proceed with 

the numerical implementation of an iterative solution we require a computational realization 

of the Green’s function, and this is presented in Appendix B in terms of the irregular eigen- 

solutions { tirn (r)} of Schroedinger’s equation. 

We can re-express w,(r) directly as a functional of p,(r) ( Eq. (2.8) ) as 
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+b-) = s?n.bmb-)I - ~m(T)(~m~mbm]) = $m(r) {am(r) - --ym} - q5m(?-)pm(7-) 

where 

(3.2) 

(3.3) 

Pm@) = 1’ ~~‘~m(~‘)Prn(~‘) 
0 

(34 

and the linear operator gm, which is a pseudo inverse of the projection operator pm, is 

defined as in Appendix B. Inserting Eq. (3.2) into Eq. (2.6) and using the Wronskian of the 

regular and irreqular wavefunctions leads to 

Now Eq. (2.5) implies that the exact OEPM exchange potential satisfies 

p,t&&-=O)=O’ (3.7) 
m 

and that by Eq. (3.6) th’ is imposes a constraint on the ‘S’ (i.e. zero angular momentum) 

waves as 

(3.8) 

An approximate V, may not satisfies this constraint on the ‘S’-waves because the values 

of 3/m may not be precise enough to cancel out the large contributions of the values of the 

derivitive of the inner orbitals at the origin. This results in a quadratic divergence in Eq. 

(2.14) and a breakd own in the iterative refinement of V,. 

To circumvent this difficulty an approximate regularization scheme is invoked whereby 

the yrn are adjusted from their ab-initio values 7: by minimizing the Lagrangian 

L = i C (Tm - TL)” + X C (nm~~4$(0) 
mE’S’ mE’S’ 
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This results in a small system of linear equations to be solved for the minimially ‘distance’ 

displaced values 7m and the Lagrange multiplier X enforcing the constraint. 

A second class of divergence, occuring in the far field, arises from the exponential decay 

of the denominator of Eq. (2.14). Th e regularization scheme we report on here simply 

circumvents this aspect by nulling each R,(r) past the point of its outermost oscillation. 

Representative results of this proceedure is illustrated in Fig. (3), which compares the 

‘exact’ KLI error (i.e. the difference from the discretized-linear-system solution) for neutral 

Krypton with the results of the ‘filtered’ Eq. (3.6). Typically there remains a residual error 

in the value of the exchange potentail at the nucleus and in the vicinity of the quanta1 

oscillations, but the bulk of the enhanced quanta1 oscillations is recovered. 

IV. CALCULATIONAL RESULTS 

Self-Consistant field calculations were performed for the ground state configuration of 

varying ionstages (ranging from three electrons to neutral atoms) for all elements 2 5 36. 

The shells were populated in hydrogenic order (ls,2s,2p,3s,3p,3d,...) except for the neutrals, 

where the 4s shell was preferentially populated before the 3d shell to aproximate the Aufbau 

principle. Benchmark calculations were performed using the Hyper-Hartree-Fock program of 

Froese-Fischer [9], and exchange only density functional calculations were performed using 

the Kohn-Sham functional width Liberman’s LDA code [lo]. Fig. (1) shows the dramatic 

improvement in total energy error when using the OEPM over DF methods, and reinforces 

the common knowledge that DF wavefunctions should be utilized in the the HF expression 

of the total energy in lieu of the LDA functional. We see that the KLI approximation is not 

a severe degradation in the accuracy of the total energy, and that our extension of the KLI 

aproximation is of the order of a 20This modest improvement is not unexpected as the HF 

total energy functional is insensitive to functional variations of the wavefunctions. 

A more relevant measure of accuracy is provided by the error in the virial relation (in 

the form of total plus kinetic energy). Fig. (5) h s ows that the KLI approximation, while still 
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where the independent electron contribution is 

Ti = 
a2 

lm dr4&& = lm dr’i{-dr2 + 
L,(Li + 1) 

r2 

and the direct/Hartree (I&j) and exchange (X33) radial integrals are given in terms of the 

multipole expansion of the Coulomb interaction 
k 

vk(r,‘+) = 2% 
r > 

as 

Hij = O” dr J J 0 
om dr’&(r)vo(r, r’)#(r’) 

x; = 1 
2 osodr J J O” dr’$i(r)$j(r)vk(r, +WMj(r’) 

0 

Note that the occupation number dependence of the exchange energy is not bi-linear 

The variation of Eq. (Al) thus yields 

ni(4Li + 2) if i=j k=O 

(4 

(A5) 

W) 

SEHHF = 2nm{ [pm f vff(r’)]q!),(r’) - hm(r’)} sbn CT’> 
where VH is the Hartree potential defined in terms of the radial charge density as 

(A@ 

VH(r) = im dr’vo(r, r’) c ni&(r’) = lrn dr’wh r’)P(r’) 
i 

and we defined 

hi(r) = -& 7 x&&(T) ha dr’&(r’)vk(r, r’)q$(r’) 
$3 k 

Gw 

Formally we may divide hi by $i to obtain an orbital dependant potential-like quantity, but 

definition would entail the introduction of spurious singularities. 
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significantly better than DF, is substantially degraded from OEPM results. These results 

reflect directly the corresponding errors in the exchange-only virial theorem derived by Levy 

an Perdew /citeLevy 

E, = - J dFp(r’)vecr . %$(f’) (4.1) 

The virial error for our extension of the KLI approximation ( Fig. (6) ) does not uniformly 

improve results. There is a systematic trend where sodium-like through argon-like ionstages 

have degraded results, otherwise the improvement over KLI is roughly a factor of two, and 

not the order of magnitude required to approach OEPM results. In fact the error in the 

integral equation as measured by 

J J drj dr’K(r, r’)V,(r’) - Q(r)1 (44 

can actually be decreased where the virial is worsened ( Fig. (7) ). 

V. CONCLUSIONS 

For configuration average total energies, where the HF expression is an insensitive func- 

tional of the wavefunctions, the KLI approximation is a rapid and superior alternative to 

density functional methods, and leaves little room for significant improvement vis a vis the 

OEPM. However more stringent measures of wavefunction quality, such a the virial theorem, 

leave open the desire, at least on the academic level, of constructing improved approxima- 

tions to the OEPM that avoid the restrictions of that method. Iterative approaches, as 

outlined in this paper, despite recovering the missing quanta1 oscillations of the KLI ap- 

proximation, falls short of this goal. 

In an information theoretic sense, the (negative) of the exchange potential can be thought 

of as a positive definite distribution function, of which our prior state of knowledge is given 

by the accurate KLI approximation, which is the state of total iqnorance of the constraints 

imposed by the exact OEPM integral equation. Future research could try maximizing the 

Shannon-Jaynes entropy [12] 
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S = Jdr{vz(r) - VxKLr (r) - ~(r)Log[V,(r)Iv,KLI(r)l} (5-l) 

subject to the contraints 

J drL(r)K(r) = pn (54 

of the moments of Eq. (1.2) 

r,(r) = J dr’F,(r’)K(r’, r> (5.3) 

pn = J dr’F,(r’)Q(r’) (5.4 
with respect to a set of linearly independent functions F,(r) in order to achieve improvements 

beyond the KLI approximation. 
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APPENDIX A: DERIVATION OF THE OEPM INTEGRAL EQUATION 

The derivation of Eq. (1.2) can be described by considering the variation of the hyper- 

Hartree-Fock energy with respect to orbtial variations and the the variation of orbitals with 

respect to a central field potential in turn. 

1. Variation of hyper-Hartree-Fock 

The hyper-Hartree-Fock expression for the total energy can be written in terms of reduced 

radial wavefunctions, normalized according to 

J 0 
m drq!$(r) = 1 (Al) 

as 
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2. Variation of orbitals 

It is straightforward to show that the variation of eigen-orbitals 4m that are solutions of 

{i;7n + V(r>Mm(r> = Em&(r) (All) 

under variation of the central field potential V(r) (with vanishing boundary conditions at 

the origin and infinity) is given by 

Mn (r’) 
SW9 = -Gm(r, r’)$m(r) (A 12) 

where 

PmGm(r, r’) E {Pm + V(r) - c,}G,(r, r’) = S(r - r’) - @m(r)q5m(r’) Gw 

A formal solution for the green’s function 

1 
Gm(r,r’) = E ~i(r>~i(r’> 

i#m Ej - Em (A 14) 

shows that it is real, symmetric and posseses the orthogonality property 

J O” drc$,(r)G,(r, r’) = 0 
a (A4 

3. The OEPM integral equation and Properties 

By substituting Eq. (A8) and Eq. (A12) into Eq. (1.1) we are able to obtain the OEPM 

integral Eq. (1.2) with 

W-, r’> = C nm&(r)Grn(r, r’)$m(r’> 
m 

W6) 

Q(r) = En,&(r) lrn dr’Gm(rt r’>hm(r’) m (Al? 

Note that K(r, r’) is real symmetric, and from the orthogonality property of the greens 

function 

thus solutions for V, are undefined to within a constant, and the kernal itself is singular 

(i.e. posseses no inverse). 
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APPENDIX B: A COMPUTATIONAL REALIZATION OF THE GREEN’S 

FUNCTION 

By computing a second linearly independent (irregular) solution gm(r) to every (regular) 

eigen-solution $m (r) of Schroedinger’s equation satisfying the Wronskian 

$m(r) “,(‘) 
dr 

- lI),(r)“zjr) = 1 

one can show that the Green’s function Eq. (A13) can be written as 

Gm(r,r’) = h(r<Mrn(r>) - &(r>L(r’) - dm(r’>L(r) + &(r>&(r’)(hJL> 

where 

Am(r) = s^m[$h(~)l 

and we have defined the linear operator 

S;n[f(r)] = ~m(r)J1dr'S(r')lIIm(r') +~m(~)~~dr'J'.(r')~~(r') 
0 

which has the proprty of being a right inverse of the projection operator 

&fZm[f(r)l = f(r) 

w 

w > 

(B3) 

w 

( w 

13 



REFERENCES 

[l] J. C. Slater, Phys. Rev. 81, 385 (1951). 

[2] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953). 

[3] M. Klapisch, Comp. Phys. Commun. 2, 239 (1971). 

[4] E. Engel, private communication (1995). 

[5] L. Fritsche and J. Yuan, Phys. Rev. A 57, 3425 (1998). 

[6] P. Hansen, Inverse Problems 8, 849 (1992). 

[7] L. Fritsche and J. Yuan, Phys. Rev. A 57, 3425 (1998). 

[8] A. Nagy, Phys. Rev. A 55, 3465 (1997). 

[9] C. Froese Fischer, Comp. Phys. Commun. 43, 355 (1987). 

[lo] D. A. Liberman, Comp. Phys. Commun. 32, 63 (1984). 

[ll] M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985). 

[12] N. Wu, “Maximum Entropy Method”, sec. 5.2, (Springer-Verlag,l997). 

[13] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Lett. A 146, 256 (1990); Phys. Rev. A 

45,101 (1992); bf46,5453 (1992); Y. Li, J. B. K rie g er, and G. J. Iafrate, ibid.47, 165 

(1993); Y. Li, J. B. Krieger, J. A. Chevary, and S. H. Vosko, ibid.43, 5121 (1991). 

[14] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976), J. D. Talman, Comp. 

Phys. Commun. 54, 85 (1989), B. A. Shadwick, J. D. Talman, and M. R. Norman, 

ibid.54, 95 (1989) 

14 



FIGURES 

FIG. 1. Absolute errors from HF values in the total energy for differernt ground state configura- 

tions. The configurations are ordered along the X-axis for visualization purposes by Z+(B/(Z+l)), 

Z being the nuclear charge and B the number of bound electrons. Red squares denote LDA total 

energy functional results, Blue LDA wavefunctions employed in the HF functional, Black - OEPM 

resulst, Green- KLI results, Yellow- the iterative extension of the KLI approximation described in 

the text. 

FIG. 2. The exchange potential for neutral krypton in the OEPM (Red)and KLI (Blue) ap- 

proximations. The dashed curves represent r . V, . 10 to illustrate the approach to the Coulomb 

exchange hole tail. 

FIG. 3. The difference between the exchange potential in the KLI and OEPM methods (Red) 

compared to the iterative correction (Blue) for singly ionized Iron in the (Closed) 3d54s14p1 excited 

configuration. 

FIG. 4. The ratio of the total energy error from the iterative extension of the KLI approximation 

to that of the KLI approximation. The X-axis is as in Figure 1. 

FIG. 5. The error in the virial (total plus kinetic energy). The data is presented as in Figure 1. 

FIG. 6. The ratio of the errors in the virial from the iterative extension of the KLI approxima- 

tion to that of the KLI approximation. The X-axis is as in Figure 1. 

FIG. 7. The ratio of the errors of the integral equation, as defined by Eq. (4.2) for the iterative 

extension of the KLI approximation to that of the KLI approximation. The X-axis is as in Figure 

1. 
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